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ABSTRACT
Shekhtman [3] gives a sufficient condition for the convergence of

abstract splines. We show that his condition is not necessary but that a

slight perturbation of his condition is both necessary and sufficient. 1In the
process, we also give a necessary and sufficient condition for a sequence of ]

abstract spline projectors to be bounded.
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SIGNIFICANCE AND EXPLANATION

Various generalizations of the polynomial spline have been given over the
years in an attempt to understand the mathematical mechanisms on which the
spline notion is based. This led to the notion of a spline as the smoothest
interpolant to some given data, with both "smoothness" and "interpolation"
taken in a rather simple, but abstract sense. Recently, Shekhtman [3] showed
that the resulting spline interpolant converges to the function from which the
data are taken, under rather reasonable conditions on the "interpolation"
notion concept used. But he left open the question whether these conditions
are necessary, and, as it turns out, made an unnecessarily strong assumption
concerning the "smoothness" notion used.

These matters are set to rights in this report.
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CONVERGENCE OF ABSTRACT SPLINES
Carl de Roor

e

Shekhtman [3] gives a sufficient condition for the convergence of abstract splines.

- Ty +he

show that a slight perturbation of his condition is both necessary and suff.cient.
process, we also give a necessary and sufficient condition for a secuence of ahstract
spline projectors to be bounded.

1 It seems most convenient to discuss the abstract spline (as introduced by Atteia (1’

in the following way. Let X be a Hilbert space, and let A be a set of continuous linear
k|
functionals on X . Mmong the possibly many elements of ¥ which agree with a given

f x €X on A, i.e., from the flat

x + ker A,

we attempt to select a particular one by the prescription that it should minimize Tyl

over y in x + ker A . Here,

and T is a given bounded linear map on X to some Hilbert space Z . We assume that

ker T N ker A = {0}

(1) ran T 1is closed

dim ker T < «

This insures that the minimization problem has one and only one solution, and this

Sponsored by the United States Army under Contract No. DAAG29-75=C-0N024.




solution is the abstract spline, or, more precisely, the (T,A)-spline interpolant to x in

question. We shall denote it by

PX .

It is obvious that the map p so defined is a linear projector on X , with

ker p = ker A .

b s

turther, the minimization problem and its solution do not change if we replace A by its

closed linear hull, i.e., by (I\l)l = (Al)l . We therefore assume from now on that

v

*
A is a closed linear subspace of X (= X) .

|
|
Remark: Here, we follow Shekhtman [3] in assuming that dim ker T < « (which is §

essential for his proofs) . Actually, Atteia [1] and others do not make this assumption,

{ but prove existence of px under the weaker assumption that (ker T) + (ker A) is closed.
i Let now (ﬂn) be a given sequence of closed subspaces of x. = X satisfying

(2) ker TN ker A = {0}, alln. .
Then Shekhtman is concerned with the question of when the corresponding sequence (pn) of

spline projectors converges pointwise, or strongly, to 1 . In this connection, the

following weil known lemma is a consequence of the uniform boundedness principle and

Lebesque's Inequality

Ix - pnxn Al pnndist(x,ran pn) .

s
Iemma 1. PR 1 dfE (pn) is bounded aad 1lim ran Bl = X
n-+oo

.
Here, we use the abbreviation

¢33 lim A :

N {1lim a :a ¢ An, all n}

with 1lim a, taken in the norm on X .

a2
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Unfortunately, the spline interpolation projection is given in terms of T and (An)

.,

and the character of ran p  is, in general, not known a priori. It is therefore important

to give conditions for the converaence of Ppn in terms of T and (l\n).

Theorem 1. (Shekhtman [3]) If lim A = X , then pn—s-+1 .

The major part of the proof is spent in proving

4
|
n].
|
i

lemma 2. If 1lim An = X , then (pn) is bounded.

I want to give a different proof of this lemma by first proving

Proposition 1. (p,) is bounded iff

_xy)
(4) 5.k s:p sup {llxllllyll : xeker T, yeker An} R S

? In effect, (4) is a cuantitative strengthening of (2) since it says that the
inclination between ker T and ker An should be bounded away from 1 . Here, the
inclination between two subspaces A and R 1is, by definition, the cosine of the

smallest angle between them, i.e., the number

: (a,b)
(5) incl(A,B) := D = p |
aeA,beR lanlb! AlB B|A
with P P, the orthogonal projector onto A and B , respectively.

R °B

Proof of Proposition 1. It is sufficient to prove that, for the (T,A)-spline

projector p,

/ 2 -1/2 -1 2.9y
! (& - < lpl - 2
J: ) (1=x") AL o B T IS n('r\“n i Ll
3 with 0 tre orthogonal projector onto (ker T)l and
Kk := incl(ker T, ker A) .
-3
|
] -
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For the lower bound, let P := PA so that ker P = ker A = ker p . Since px =

in ker T , we have

Ix# = dpxl < lpldist(x,ker p), for all x € ker T ,

while dist(x,ker p) = dist(x, ker P) = Ipxl . Consequently,

- 2 2

| - I

| inf (:::H) = -  sup jll_Zlg_ = 1 = I(1-P) e T"2 =1 - (2
B! xeker T xeker T Ix i

using (5) and the fact that 1 - p

Pker A
For the upper bound, recall from Golomb [2; (3.8)] (or else verify directly) that

-1
| (7 PR e T

with TO t= T xer A Consequently,
{ Ipl < 1+ l'r;‘un'ru -
|
g and we calculate IT01I as
“ N T N 2 L

xeker A

But, since Tx = TQx (using the orthoprojector Q onto (ker T)l. introduced earlier), we

3 have
lix I HQEH
WI/TIXE = wl  Troes 1
hence
-1 -
e "1 < sup (IxN/1Qx1) (T ) Il
v xeker A ‘ran Q
F
-4~




2 2
Il Il (1= e Il
while, as before, inf _Qx_2 Rl R sup (—O);z = - I{(1=Q)

ver
xeker A Ixll xeker L lIx I

by (5) and since 1 -0 =P e 111

Remark. Condition (4) is trivially satisfied in case (/.n) is increasing (the only

3 situation considered, e.g., in Golomb [2]) since then incl(ker T, ker Ln) is decreasing

as n increases. (4) is also satisfied in case lim An iker T . Box, if K =1y “there

would exist, using the fact that dim ker T < ® , an x in ker T and Ya in ker A

all n, so that

{
}
1 Ll ey
|
!

I et S
I I
xIIHan
! : 4
{ But then, for all z, in An, 1
} q
' ux'znl '(X'znlyn)’ ! !(x:}’n)l
L e N e e e A e ] ;
lix = I|xIlHyn Il lIx I llyn I

showing that x would not be in lim An' In particular, Lemma 2 follows.

Shekhtman finishes the proof of Theorem 1 with the following nice observation: Since

*
(p,) is bounded, so is (pn), and, since lim An = X , by assumption, it follows that

*
pn—s* 1. Consequently, pnl* 1 . But then ’I‘pn—w* T , therefore ITx! < lim ITp xI,
m while also l'rpnxl < ITxIl . Therefore n'rpnxll =% WMxi , and so Tpn—s+ Te It follows
j that
|
=1 s -1
w, ~ ranQ) TPy ea tanQ) LS /

while, by the finite dimensionality of ker T = ran(1-0), pp—wv 1 implies

(1=0)p, ==+ 1-0 . ||

sfa
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1 - *
4 Since ran PO A while lp I = l!pn I , Shekhtman's argument shows that, for the
n n
‘3 particular sequence (pn) of spline projectors,
Sl ; ) s
— —— .
P, + 1 implies R 1

S i

Such an implication does not hold for general sequences of linear projectors, so that the
converse of Theorem 1, if true, would again have to be proved using some special properties

of the spline projectors. As it turns out, though, the converse does not hold even for

Gk AL i

spline projectors, as the following simple example shows.

Mot S it

«©

E . = = = - = .=

Example. Take X =2 =%, ,T=9Q, 1-0 span{e1} , with ®y (Gij)1=1 and
} = see .
g An span {ez, e _qrente, }
!
1
t Then pnx = Ejmx(j)ej + x(n)e1 which converges in norm to x since 1lim x(n) = 0 .
1

| In other words, pn—s+ 1 . On the other hand,

} dist(e,, An) = dist(e1,span{e1+en}) = 1/v2

In this example, lim An = span{ez, sewe = (ker Tyl ., hence

®3
(a) lim A

2D (kex ‘Yl s
ol

We will show below that condition (8) is necessary for pn—s-* 1. The example then also

shows that 1lim An need not contain anything else.

Proposition 2. Suppose that pn—s-* 1 . Then lim A = X if and only if there exists a

=~ 'n
linear projector R with ran R = ker T which is the uniform limit of a sequence (Ph)

*
of linear projectors with ran l% = ker T and ran Rn = An' all n>n0.

Proof. If 1lim f\n = X , then any bounded linear projector R on X with range

zay T can be written

o a bl

-6




for some basis (xi)r of ker T and some dual set (Ai)ﬁ

1
lim An = X , we can find sequences (Ain) A;n)
e
1

of linear functionals. But,

since ) with € An' all n, and

uki - =0y 5 A=, 0uax = Since Aixj = éij' all i,j, it is then also possible for

all large enouah n to find a basis (x;n)) for ker T with

z (n)
necessarily, also "xi - xi I ;:; 0 . But then

ML
1

.. and then,
5 | 13

r

B o= I xfgyi®

n 5 i, 1 G %
i=1

converges in norm to R ,

For the converse, if R, converges in norm to R , then the sequence (Sn) given by
* *
S &= RR T T
n n'n

converges in norm to

& 4= KRR & P

The linear map S is selfadjoint, bounded, and is bounded below. Explicitly,

(Sx,x) = ﬂRtz & HTxH2

while TRx = 0 , hence

2

Irx1™ = HT(1-R)xu2 g .

= 2 2 :
{"(T|ran(1-R)) I, ITH}SNC1I-R)xI® . ?

This shows that

2

(sx,x) € {min{1, )'1u}, max{1,lTM}}2(nRxn + ”(1-R)x"2)

"(T‘ran(1-R)
while

mxt? + 10-Rxi? €, 1+ 2IRIM-RIVIXIZ . ]

We conclude that the bilinear form

(x,y)g = (Sx,y)
is an eauivalent inner product on X and § 1is, therefore, in particular invertible.
Since Sn——¢ € in norm, it follows that also 5;1 exists for n sufficiently large and

converqges in norm to S 1.

-




S -1 s
We now conclude from pn—-» 1 that also Snn s —_— 1

n

« In particular, for »
-1

etti 2 =85 x we get
setting - 2 ’ g

*
3 dm— G z = RR z ¥ D Py .
o¢n npnn n"n"n%n Tacn

* *
By construction, ran Pn (= An , while T 'I'Dn[X] c An due to the fact that (e.a. by (7))

*
= = ] ] D e
‘I‘pn (1 PT[kerAn])T . hence 'I'pn[x] Gl lker An,i and so T ’I‘pn[y, C (ker A.n)

But this shows that = € lim An =

The last arqgument, carried out with Fn =1-0, all n (recall that 0 = D”mr_w) )

shows that,for all x € x ,

*
(1-(});-.\“:n + TTpnzn == X

n-+eo

* *
But, since ran T C (ker T)L = ran Q , this implies that T 'I'pnzn —+ 0x and so shows

that (ker T)l = ran Q C lim I\n « This proves
Corollary. If P, =0 + then (kerT)l C 1lim An .

Theorem 2. pn—s-+ 1 iff sup incl(ker T, ker An) <1 and (ker T)L C 1lim ‘A'n

Proof. Proposition 1 and the corollary to Proposition 2 show that the stated

conditions are necessary for pn—s+ 1 . In order to show the sufficiency of these

conditions, we need, by Proposition 1, only prove the following

Proposition 3. If (p,) is bounded and (ker T)L C lim A , then p —Ss1 .

Proof. Since ker T C ran p and (p_ ) is bounded by assumption, we are dore once we
PLAASE = n n

show that (ker T)LC 1lim ran pn. For this, let. z € (ker T)l = ran Q , and consider
'r"rz , also in ran Q . By assumption, y = lim Yn + with yn € An, all n. Consequentlv,
lim gy, = T'Tz and Lim(1-0)y, = 0 .

Now consider the bounded and boundedly invertible linear map

S := 19 + 7°7




on X introduced earlier for the proof of the corollary to Proposition 2, Note that
ker T and (ker T)l = ran Q are both invariant under S , and S = 1 on ker T . Hence
we can write Yn as
Ld
Yo o =00y & gl
for some z, € ran Q and, since yn——* y , we have zn——* z . Further,
for all x € ker An,
*
0° =" G,y )n s =R, (1=0)y )+ Ux, T Tz ),
therefore
I(Tx,'rzn)l < llxllll(1-Q)ynll.
But this says (with (7)) that
|(Tx,Tz )|

| = sup

-1
< (T i A=)y K =—2>0
x€kerAn ITx I ‘kerAn n n

X "=
llzn P2l in[kerAn]Tznl

since, by the proof of Proposition 1 and the boundedness of (pn),

=1

supnu(T ) I < =, while H(1-Q)ynu —+ 0 as noted earlier. We conclude that

ker A
n

z = limz, = limpz . |||

*
Remark. In effect, the proof of propositions 2 and 3 relies on the fact that T T

*
maps ran pn N ran Q9 and ran P, N ran 0 onto each other.

Remark. As mentioned earlier, we have followed Shekhtman in making the assumpticn
that dim ker T < ®, But, our proof of Theorem 2 does not use that assumption. Theorem 2
is therefore true under the weaker assumption that p, 1is defined for all n, which is
assured in case (ker T) + (ker An) is closed for all n, i.e., in case

incl(ker T, ker An) <1 ,alln.

e e T
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